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THE STORY OF NONwSECRET ENCRYPTION by J H ELLIS

1. Public-key cryptography (PKC) has been the subject of much discussion in the open
literature since Diffie and Hellman suggested the possibility in their paper of Apri11976 (reference
1). It has captured public imagination, and has been anaIysed and developed for practical use. Over
the past decade there has been considerable academic activity in this field with many different
schemes being proposed and, sometimes, analysed.

2. Cryptography is a most unusual science. Most professional scientists aim to be the fast to
publish their work, because it is through dissemination that the work realises its value. In contrast,
the fullest value of cryptography is realised by minimising the information available to potential
adversaries. Thus professional cryptographers normally work in closed communities to provide
sufficient professional interaction to ensure quality while maintaining secrecy from outsiders.
Revelation of these secrets is normally only sanctioned in the interests of historical accuracy after
it has been demonstrated clearly that no further benefit can be obtained from continued secrecy.

3. In keeping with this tradition it is now appropriate to tell the story of the invention and
development within CESG of non-secret encryption (NSB) which was our original name for what
is now called PKC. The task of writing this paper has devolved on me because NSE was my idea
and I can therefore describe these early developments from personal experience. No techniques
not already public knowledge, or specific applications of NSE will be mentioned. Neither shall I
venture into evaluation. This is a simple, personal account of the salient features, with only the
absolute minimum of mathematics.

4. The story begins in the 60's. The management of vast quantities of key material needed for
secure communication was a headache for the armed forces. It was obvious to everyone, including
me, that no secure communication was possible without secret key, some other secret knowledge,

.

or at least some way in which the recipient was in a different position from an interceptor. After
all, if they were in identical situations how could one possibly be able to receive what the other
could not? Thus there was no incentive to look for something so clearly impossible.

5. The event which changed this view was the discovery of a wartime, Bell-Telephone report
by an unknown author describing an ingenious idea for secure telephone speech (reference 2). It
proposed that the recipient should mask the sender's speech by adding noise to the line. He could
subtract the noise afterwards since he had added it and therefore knew what it was. The obvious
practical disadvantages of this system prevented it being actually used, but it has some interesting
characteristics. One of these, irrelevant to the main theme, is the amusing party trick of using the
negative of the speech signal as the added noise. This leaves no signal on the line but the received
signal unimpaired. This is easy to do and somewhat startling, but a simple analysis of the feedback
shows that it is simply an amplifier with a low inP1:!timpedance which shorts ouUhe line.

6. The relevant point is that the receiver needs no special position or knowledge to get secure
speech. No key is provided; the interceptor can know all about the system; he can-even be given
the choice of two independent identical terminals. If the interceptor pretends to be the recipient,
he does not receive; he only destroys the message for the recipient by his added noise. This is all
obvious. The only point is that it provides a counter example to the obvious principle of paragraph
4. The reason was not far to seek. The difference between this and conventional encryption is that
in this case the recipient takes part in the encryption process. Without this the original cmJ.oept is
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still true. So the idea was born. Secure communication was, at least, theoretically possible if the

recipient took part in the encipherment.

--- .

7. The next question was the obvious one, "Can this be done with ordinary encipherment? Can

we produce a secure encrypted message, readable by the authorised recipient without any prior

secret exchange of the key etc?" This question actually occurred to me in bed one night, and the

proof of the theoretical possibility took only a few minutes. We had an existence theorem. The

unthinkable was actually possible. The only remaining question was "Can itbe made practicable?"

This took a while to answer.

8. I published the existence theorem in 1970 (reference 3). Its outline is as follows. We may

represent an encipherment process by a look-up table, with the settings, message etc as the variables

used for look~up, and the cipher text as the contents of the table. Such a table will normally be

impossibly huge but itcould, in principle, always be constructed. Conversely, such a table itself
can be used as such a process, even if a more conventional embodiment cannot be found. This
proof treats the encipherment processes as tables, and demonstrates a form which satisfies the
requirements.

9. Suppose the recipient has two tables Ml and M3.wbile the sender has one, M2. These
machine tables are not secret and may be supposed to be possessed by the interceptor. Ml takes an
input k and produces an output x. M2 takes inputs x and p giving an output z. M3 takes inputs z
and k. All these quantities are large numbers of the same magnitude. We can think. of Ml as a
linear table or simple list, while M2 and M3 are square tables.

10. In operation-p is the message which is to be sent, and kis a random number, the key, chosen
by the recipient. He enciphers k by Ml to get x which he sends. The sender uses x to encipher p
with M2 to get z, the cipher text, which he sends back. Now the recipient uses k to decipher z by
means of M3. It is clearly possible for the entries of M3 to give p under these circumstances, so
we have achieved our objective.

11. If the numbers are large enough, and Ml and M2 sufficiently random to avoid working
backwards, p cannot be found without knowing k. In public-key-encryption terms, x is the public,
encipherment key and k the private, decipherment key.

12. Having thus demonstrated that NSE was possible, the next task was to find a practical
implementation. There was no difficulty in getting devices to behave as Ml and M2 in producing
output from which the input could not be found, although it was theoretically defined bytheoutput.
The problem was to devise a method for which M3 could be produced. Variou~;ideas were found
to have flaws, and there was always the possibility that we were trying to break ~Iomesubtle law of
mathematics in looking for practicability. Of course there was no need to use the format of the
existence theorem; that was only one option. For instance, suppose we could find two secure
encipherment processes which commuted; presu~bly one process with two different keys but not
necessarily. Then the sender (S) could encipher his message, p, and send it to the recipient (R). R
could now re-encipher and sent it back to S. Because the two encipherments commute the result
would be the same as if R had enciphered first, and S secDnd; so S could remove lUs-encipherment.
This text, which he sends back to R is the same as p enciphered by R, so R can decipher. At no
time is unenciphered text or key transmitted. This has the disadvantage of an extra pass, but this
does not debarr it.

-

13. Because of the weakness of my number theory, practical implementations were left to others.
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The fIrst workable idea was put forward in reference 4 by Clifford. Cocks. This is esse~tially the
RSA Algorithm. Briefly the method is this. R chooses two large prunes P and Q also prune to P-l
and Q-l, and sends N=PQ to-&: S lms a message which he enciphers as C=MN (mod N).

14. To decipher, R fmds p' and Q'

and

pp' = 1 (mod Q-1)

QQ' = 1 (mod P-l)

Then M =cP' (mod Q)

M =CQ' (mod P)

so M can be found. The security lies in the difficulty of factorising N.

15. It is interesting to note that this method follows exactly the existence theorem; k is P and
Q, x is N, P is M and z is C. Ml is the startlingly simple process of multiplying the two parts of k,
P and Q, together. M2 consists of raising M to the power N (mod N) and M3 is the process of
paragraph 14.

16. The RSA algorithm (reference 5) differs in that R forms a pair of integers, d and e, such that

de =1 (mod (P-l)(Q-l))

He sends e and N to S. and S enciphers M as

C=~(modN)

R deciphers as

M= cd (mooN)

17. The differences between the two algorithms are superfIcial. Cocks is a special case of RSA
in that it puts e =N. Also it suggests a more computationally efficient method of decryption by
retaining the factorisation ofN and carrying out the exponentiation twice, but to the smaller moduli
P and Q. Of course the decipherment could still be done by forming d such the dN =1 (mod(p-1)(Q-
1)). This technique for reducing the computation is now well-known in the context of RSA.

18. The RSA algorithm has the merit that. it is ummetrical; the same process..is used both for
encipherment and decipherment, which simplifies the equipment needed. Also e can be chosen
arbitrarily so that a particularly simple version can be had forencipherment. In this way the complex
process would be needed only for the recipient. Indeed, the same simple e cou1~e used for all
encipherments, with the recipients just supplying different N. These differences, however are small.
The two algorithms are variants of the same method.

-

19. A couple of months later Malcolm Williamson came to me with a different scheme. This
also involved the raising of the message to a power which was the product of large numbers, but
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relied on the fact that exponentiation was commutative. He published this in reference 6.

20. The paper was couched in-the rather more general form of finite rings; but in. terms of
modular arithmetic the scheme was for S and R each to choose a large number, k and I respectively.
Taking the message again as M, to give some consistency in our notation, S sends Mk and R returns
(M~l =Mkl; all calculations being mod some large prime, say P. 8 forms K so that Kk =1 (mod

P-l) and therefore MKk =M (mod P). 80 that by raising MId to the power K, S can remove his

original encipherment leaving Ml which he sends to R. R removes I in the same way and so recovers
M. The fact that k and I need not be prime enormously helps their choice. They must of course,
in this version be prime to P-l.

21. Later he produced a simple, elegant scheme which was much easier to use. It was the sort
of idea which is obvious once some-one else has thought of it. In this a base x and a modulus q are
known. x will be small and q large. S and R each choose a large random number; say a and b.
They then form xa and xb respectively and send the results to each other. They both now form ~b
by raising the number they have received to the power of their own chosen number. Thus after two
passes and no decipherment process they both have a large number known only to them which can
be used as key in the normal way.

22. I described this method internally on a number of occasions, and, for this reason I suppose,
I find I have often been given credit for it although I did, of course, acknowledge the source. I
should like to take this opportunity of reaffirming that the credit belongs to Malcolm Williamson.
He did publish it, much later than he thought of it, in reference 7. The method was published in
reference 8 by Diffie and Hellman. This was identical to Williamson's version, except that they
restricted q to be prime.

23. One major class of openly published schemes is based on the Knapsack Problem. The first
such scheme to be published was due to Merkle and Hellman (reference 9). This was not anticipated
within the closed community, but, although the Knapsack Problem itself is NP complete, the
security of schemes based on it is weak.

24. This is the history of invention and early development of NSE by CESG. Some time after
the basic work had been don~ reference 1 was published by Diffie and Hellman. This was the start
of public awareness of this type of cryptography and subsequent rediscovery of the NSE techniques
I have described.
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